Topic review |
Posted: Tue 16:25, 24 May 2011 Post subject: polo fred perry Triangle on the Meyer-K  nig-Zel | |
Triangle on the Meyer-K nig-Zeller Operators, said the exact second moments
A chu)-2df + fast - 11-4-1c A + I1 () I1 () ... ... one by one. 27 (1 a) I (1 ~ f) (1 a chu) a dt-4-(1 a) l (1 a f) (1 chu) -. dt. ((-);. 27) one by one F (2,1; n +3 + F (1,1; n +2 one by one 2 No. 2 』oc bitter post a r a c a chu a + + I1 (1) r (+) J ~ ... ... '111 A + I1 () I1 (+) Jo a ... ... = (1 a) f (1 A f) (1 a chu) df + Jo ( 1 a) r (1 a f) (1 a chu) a df. JoM ((I1 () r1 (+2) Jo . A at) 2P (n1r + I1 (1) +) J0 a ... one by one xy (1 A _ D) I (1 a f) (1 a xt)-zdt + (1x) _f) a xt) £. Theorem 2 is proved. Theorem 3 For any ∈ N and (,) ∈ S {(1,fred perry singapore,) l0 ≤ Y ≤ 1} the following equation set up M ((u-);,. Y) one by one 2y (x - Y) 9 ( 1 - x) (F (1,2; n +3 +.- l1, '¨ lu' ... {F (2,2; n +3 )+-( x ---- x- zq - 2xy-T2-yz-) (-1 - ~ x) F (1,2; ) one hundred and thirteen F (2,2; n +3 +21 (n +) (n +) '.... .... F (1'2. n ten 2. ( A ((a) (i); ,) one by one == Lan fF (1,2; +3 +2 n + I ... b = thirty-two F (1, +1', 2; +2; z). (9) prove that this card only (, and the remaining two equations similar to the license. M ((a).; z,) a a F (+1, +2; +3 + + Z +1, n +1; n +2; z) (1 A z) +1 (+1) (+1) - Ji: A z) - Ji A) a (Σ / = o. Σ / etc z) = ol12 !!(+) H A / A k = o / = 0z an F1 (+1; a 1, +1; +2;, z .) Where F (mouth; Lu,; y;-z,) is the first Apei ears (Appel1) binary hypergeometric series. Continuous use of the formula (see [5]) F1 (mouth; 8,; y;,) (1 a) rr (1 a) F1fyF1 (mouth;,; y;,) get (1 a) F1f mouth; J9, yJ9F1 (+1; a 1, +1; F1 (1; 2,magasin abercrombie, n +1; +2;, an xy) (1 - y Bu ()(,,) one (1) (1 a) A F1 (1 then M ((u-).; z,) 2,ralph lauren danmark, a; + ... x - y) Y (1 a Y) (1 A z) F (1.2, A 1; n +2) 1 Wife Wife) k = 0 / + = 0k! l! (+2) k ~ l a 1 a Y / twenty-two = c,! +1 Ik! (+2) L sprouts. Jk1Y) ...! (+2) A /: (F (1'2. +2. Z) a F (2'2 .3; x) one by one __: F (2,2; +3; z) + (+2) (+1)''b F (1,polo fred perry,2; +2. Theorem 3 is proved. 【References [1] MEYER-K () NIGW, ZellerK.BernsteinschePotenzreihen mouth]. StudiaMath, 1960,19:89-94. [2] CHENEYEW, SHARMAA.Bernsteinpowerseries [J]. CanadJMath ,1964,16:241-252. [3] SHAOXING,tory burch uk, Professor Yeung months. triangle Meyer-KOnig-Zeller Operators bead]. Mathematical Research and Exposition, 1995,15 (1) :98-100. [4] SHAOXING. triangle Meyer-K6nig-Zeller operators and approximation properties [J]. Beijing Normal University (Natural Science), 1995, 30 (Suppl) :19-26. [5] Wang Zhuxi, Guo Dunren. Introduction to Special Functions [M]. Beijing: Science Press, 相关的主题文章: The level of R22 and R410a in microtubes experimental study _2606 Condensation Pressure Drop Debate Thoughts _3367 abercrombie outlet Universal full- frame digital SLR cameras |