Jetmen Revival downloads Forum Index
RegisterSearchFAQMemberlistUsergroupsGalleriesLog in
magasin abercrombie Tower of Hanoi non recursive A

 
Reply to topic    Jetmen Revival downloads Forum Index » JETMEN ONLINE View previous topic
View next topic
magasin abercrombie Tower of Hanoi non recursive A
Author Message
Googlelovqj
Forum Master
Forum Master



Joined: 21 Feb 2011
Posts: 403
Read: 0 topics

Location: England

Post magasin abercrombie Tower of Hanoi non recursive A
Tower of Hanoi non recursive Algorithms and Research


[O]. . . Hanoi (n A 2, A, B, c) V and output. the results of the first even number of digits in the following transformation: thus, enter the size of Hanoi solution of the problem before a ; B ; ; 3 Results and Conclusion 'if N => nS is Cf,[link widoczny dla zalogowanych],' a formula to add a 3.1 N (k,) a 2 × N (k, a 1) +13.1.1 Hanoi (n, A, B , C) a Hanoi (n A 1, A, a 2 × (2 × N (k, a 2) +1) +1 C, B) + A A> C + Hanoi (n A 1, B, A, C) a 2 × N (k,[link widoczny dla zalogowanych], a 2) +2 +2. a Hanoi (n A 2, A,[link widoczny dla zalogowanych], B, C) + A A> B + a 2 × (2 × N (k, a 3) + 1) +2 +2 Hanoi (n A 2, C, A, B) + A A> C + a 2. × N (k, a 3) +2 +2 +2. Hanoi (n A 2, B, C ,[link widoczny dla zalogowanych], A) + B A> C + one ... Hanoi (n A 2, A, B, C) a 2 × N (yes, yes) Bu +2 +2 +2 +2 + .... A Hanoi (n-2 , A, B, C) +1 + a 2 a 1.Hanoi (n A 2, C, A, B) +2 +3.1.3 relative time compared Hanoi (n A 2,[link widoczny dla zalogowanych], B, C, A) +5 + relative time is shown in table 1. Table 1, the time efficiency of the new algorithm algorithm plate number r / a 15r / = 20r / a 25H = 26r / a 27, l of a 29r / a 30, l of a 35r / = 36r / a 37r / a 38digui0.030.980.9850.7096.30LiuZhenHai0.020.770.7766.1 /////// NiAiBing0.093.333.33146.00346.O07 / f / / LiZhong0.047I.4445 .4890.92 I8I.28759.I6I307.50XieXianFei1.002.00108.00257.00 ///|//| K = 30.203.569.4120.7020.7054.50 ///// K a 90000.030 .150.341.2251.40 / K = 100000.080.201.702.774.7863.701】 5 / NOTE: spaces that have not been tested. algorithm time efficient than the existing non-recursive and recursive algorithms. Acknowledgements: Thanks to the guidance of Professor Sun Xiehua 【References [1 Yong-xin. Tower of Hanoi problem of non-recursive algorithm [J]. Huzhou Teachers College, 2000 (6) :43-47. [2] E33 [4] Ning Aibing. Huang. Hanoi problem in the form of non-recursive algorithm is derived Jj. Computer Engineering and Science .2003 (25) :66-68. Liu Zhenhai. beam long bao. Hanoi problem of a non recursive algorithm [J]. Computer Development and Applications, 2002 (11) :33-34. Zhong, De-Hui Yin. Meng Lin. recursive algorithm of the general rule of non-recursive EJ]. Sichuan I Normal University. 2003 (2) :209-212. SUN Xie Hua. Progress in computer cryptography [M]. China Institute of Metrology .2001 (1) :1-18.

相关的主题文章:


[link widoczny dla zalogowanych]

[link widoczny dla zalogowanych]

[link widoczny dla zalogowanych]


The post has been approved 0 times
Tue 16:22, 24 May 2011 View user's profile
Display posts from previous:    
Reply to topic    Jetmen Revival downloads Forum Index » JETMEN ONLINE All times are GMT + 2 Hours
Page 1 of 1

 
Jump to: 
You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Design by Freestyle XL / Music Lyrics.
Regulamin